Abstract

Oxy-coal combustion with pressurized fluidized beds has recently emerged as a promising carbon capture and storage (CCS) technology for coal-fired power plants. Although a large number of energy efficiency analyses have shown that an increase in combustion pressure can further increase the net plant efficiency, there are few experimental studies of pressurized oxy-coal combustion conducted on fluidized bed combustors/boilers with continuous coal feeding. In this study, oxy-coal combustion experiments with lignite and anthracite were conducted with a 30 kWth pressurized fluidized bed combustor within the pressure range of 0.1 MPa to 0.4 MPa. The investigation focused on the elucidation of the impacts of combustion pressure on the combustion performance, pollutant emissions and desulfurization of oxy-coal combustion in fluidized beds. The results showed that an increase in pressure increased the combustion efficiency and combustion rate of coal particles, and the promoting effect of pressure increase was more significant for the high rank coal with smaller particle size and the high O2 concentration atmosphere. For both coals, NOx emissions decreased with pressure but N2O emissions increased with pressure and accounted for a considerable part of the nitrogen oxide pollutants under high pressure oxy-coal combustion conditions. The pressure had insignificant impact on the SO2 emissions of oxy-coal combustion but an increase in pressure enhanced the direct desulfurization of limestone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.