Abstract

Oxy210, a semi-synthetic oxysterol derivative, displays cell-selective inhibition of Hedgehog (Hh) and transforming growth factor beta (TGF-β) signaling in epithelial cells, fibroblasts, and macrophages as well as antifibrotic and anti-inflammatory efficacy in models of liver fibrosis. In the present report, we examine the effects of Oxy210 in cellular models of lung and kidney fibrosis, such as human lung fibroblast cell lines IMR-90, derived from healthy lung tissue, and LL97A, derived from an idiopathic pulmonary fibrosis (IPF) patient. In addition, we examine the effects of Oxy210 in primary human renal fibroblasts, pericytes, mesangial cells, and renal tubular epithelial cells, known for their involvement in chronic kidney disease (CKD) and kidney fibrosis. We demonstrate in fibroblasts that the expression of several profibrotic TGF-β target genes, including fibronectin (FN), collagen 1A1 (COL1A1), and connective tissue growth factor (CTGF) are inhibited by Oxy210, both at the basal level and following TGF-β stimulation in a statistically significant manner. The inhibition of COL1A1 gene expression translated directly to significantly reduced COL1A1 protein expression. In human primary small airway epithelial cells (HSAECs) and renal tubular epithelial cells, Oxy210 significantly inhibited TGF-β target gene expression associated with epithelial-mesenchymal transition (EMT). Oxy210 also inhibited the proliferation of fibroblasts, pericytes, and mesangial cells in a dose-dependent and statistically significant manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call