Abstract

Supercritical CO2 power cycles for fossil energy power generation will likely employ oxy-combustion at very high pressures, possibly exceeding 300 bar. At these high pressures, a direct fired oxy-combustor is more likely to behave like a rocket engine than any type of conventional gas turbine combustor. Issues such as injector design, wall heat transfer, and combustion dynamics may play a challenging role in combustor design. Computational fluid dynamics modeling will not only be useful, but may be a necessity in the combustor design process. To accurately model turbulent reacting flows, combustion submodels appropriate for the conditions of interest as defined by the turbulent time and length scales as well as chemical kinetic time scales are necessary. This paper presents a comparison of various turbulence–chemistry interaction (TCI) modeling approaches on a canonical, single injector, direct-fired sCO2 combustor. Large eddy simulation is used to model the turbulent combustion process with varying levels of injector oxygen concentration while comparing the effect of the combustion submodel on CO emissions and flame shape. While experimental data are not yet available to validate the simulations, the sensitivity of CO production and flame shape can be studied as a function of combustion modeling approach and oxygen concentration in an effort to better understand how to approach combustion modeling at these unique conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.