Abstract
Two classes of thermal protection systems composed of a carbon-fibre-reinforced (CFRP) layer and an ablative material layer joined with a thermo-resistant ceramic adhesive were developed. The two classes differ in the composition of the ablative material reinforcing compound. In the first class, the ablative material is based on micronic-sized cork granules, and in the second class, the ablative material is reinforced with carbonic felt. For both classes of thermal protection systems, the reinforcement material was impregnated in simple phenolic resin, and nanometric additive, consisting of silicon carbide nanoparticles added in two different weight contents (1 and 2% by weight) relative to the resin. The thermal conductivity for the ablative materials in the thermal protection systems structure was determined. A test facility using oxy-butane flame was developed through which the thermal protection systems developed were tested at extreme temperatures, to simulate some thermal conditions in space applications. The materials were characterised from a morphostructural point of view using optical and scanning electron microscopy after thermal testing. The TPS composed of the carbon-felt-based ablative layer showed improved behaviour compared to the cork-based ablative ones in terms of the temperature increase rate during thermal conductivity testing, mass loss, as well as morphostructural appearance and material erosion after oxy-butane testing. The nSiC-based samples in both sets of TPSs showed improved behaviour compared to the un-filled ones, considering the temperature increase, mass loss, and morphostructure of the eroded material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.