Abstract

Activities and quantities of several oxidative phosphorylation (OXPHOS) system complexes are decreased in many Parkinson's disease (PD) patients. Mutations in PD-associated nuclear genes affect OXPHOS function. Moreover, the inactivation of other nuclear genes related to mitochondrial DNA (mtDNA) replication and expression also leads to Parkinsonism. MtDNA only encodes OXPHOS subunits and the RNAs required for their expression. Mutations in mtDNA genes have also been associated with PD. Furthermore, many xenobiotics that inhibit different OXPHOS complexes provoke Parkinsonism. The binding sites for these venoms are usually mtDNA-encoded subunits. However, and despite the existence of mutations or toxicants that can cause Parkinsonism, PD only rarely results from isolated genetic or environmental factors. Combinations of nuclear and mitochondrial genetic and environmental factors have additive effects and increase the risk of PD. It is also possible that population polymorphisms in mtDNA genes, affecting interactions with different xenobiotics, may behave as susceptibility factors for developing PD only in the presence of that particular xenobiotic. Therefore, a deeper analysis of the OXPHOS function in PD is required if we want to unravel the complexities of this disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.