Abstract

Eukaryotic cells contain multiple copies of mitochondrial DNA (mtDNA) in discrete organelles or as tubular networks throughout the cytoplasm. The mtDNA copy number is dynamically regulated by mitochondrial biogenesis and mitophagy processes. However, the conditions regulating mtDNA replication, an essential component of biogenesis, are unknown. We observed that short-term (2 h) treatment of rat myoblasts with oligomycin, a specific inhibitor of the mitochondrial F1F0 ATP synthase, resulted in stimulation of mtDNA synthesis from the OH replication origin. This effect was abrogated by Compound C, an antagonist of the AMP-dependent protein kinase (AMPK), a universal intracellular energy sensor, and in AMPK-knockdown cells, indicating that mtDNA replication is regulated by AMPK under oxidative phosphorylation (OXPHOS)- deficient conditions. Using antibody decoration, enzymatically active AMPK, phosphorylated at T172 of the α1 subunit, was found to be located on the mitochondrial surface. Furthermore, oligomycin induced the compartmentalization of several mRNAs encoding OXPHOS components and mtDNA replication factors to mitochondria. Compartmentalization of mRNAs was inhibited by Compound C. We infer that AMPK is locally activated by inhibition of the F1F0 ATP synthase to stimulate association of mtDNA replication factor mRNAs, leading to stimulation of mtDNA synthesis. The findings have implications for the clonal expansion of OXPHOS-deficient mtDNA mutant mitochondria in human patients, with clinical consequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call