Abstract

Hypocrellin B (HB), a naturally occurring photosensitizer, has been extensively and intensively studied as a promising photodynamic therapy (PDT) agent. In this work, three new oxovanadium(IV) complexes were designed and synthesized with HB as a bridging ligand and phen (1,10-phenanthroline, complex 1), tmp (3,4,7,8-tetramethyl-1,10-phenanthroline, complex 2) and dpq (dipyrido[3,2-f:2'3'-h]quinoxaline, complex 3) as terminal ligands. The use of a diimine terminal ligand avoids the formation of polymeric complexes and ensures the three VO(2+)-HB complexes possess a definite molecular formula and molecular weight to meet the single component requirement for an ideal PDT agent. Compared to HB, the VO(2+)-HB complexes exhibit improved water solubility, enhanced absorptivity in the phototherapeutic window, increased binding affinity toward dsDNA, and similar singlet oxygen quantum yield, therefore advanced DNA photocleavage activity. Both the DNA binding constants and photo nuclease activities of the complexes follow the order 2 (tmp) > 3 (dpq) > 1 (phen), demonstrating the importance of the binding affinity to biomolecules, which improves the bioavailability of reactive oxygen species. Our work opens a new avenue for the development of HB-based PDT agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call