Abstract

In a wide range of neuroblastoma-derived lines oxovanadium compounds such as bis(maltolato)oxovanadium(IV) (BMOV) are cytotoxic. This is not explained by oxidative stress or inhibition of ion channels. Genotoxicity is unlikely given that a p53 response is absent and p53-mutant lines are also sensitive. Cytotoxicity is inhibited by N-acetyl cysteine and glutathione ester, indicating that BMOV action is sensitive to cytoplasmic redox and thiol status. Significantly, combining BMOV with glutathione synthesis inhibition greatly enhances BMOV-induced cell death. This combination treatment triggers high AKT pathway activation, highlighting the potential functional importance of PTP inhibition by BMOV. AKT activation itself, however, is not required for cytotoxicity. Oxovanadium compounds may thus represent novel leads as p53-independent therapeutics for neuroblastoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.