Abstract

With the use of x-ray absorption spectroscopy, we have found that the Fe-O bond in chloroperoxidase compound II (CPO-II) is much longer than expected for an oxoiron(IV) (ferryl) unit; notably, the experimentally determined bond length of 1.82(1) A accords closely with density functional calculations on a protonated ferryl (Fe(IV)-OH, 1.81 A). The basicity of the CPO-II ferryl [pKa > 8.2 (where Ka is the acid dissociation constant)] is attributable to strong electron donation by the axial thiolate. We suggest that the CPO-II protonated ferryl is a good model for the rebound intermediate in the P450 oxygenation cycle;with elevated pKa values after one-electron reduction, thiolate-ligated ferryl radicals are competent to oxygenate saturated hydrocarbons at potentials that can be tolerated by folded polypeptide hosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.