Abstract

Imidazole glycerol phosphate dehydratase (IGPD) catalyses the dehydration of imidazole glycerol phosphate to imidazole acetol phosphate, an important late step in the biosynthesis of histidine. IGPD, isolated as a low molecular weight and inactive apo-form, assembles with specific divalent metal cations to form a catalytically active high molecular weight metalloenzyme. Oxo-vanadium ions also assemble the protein into, apparently, the same high molecular weight form but, uniquely, yield a protein without catalytic activity. The VO 2+ derivative of IGPD has been investigated by electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopy. The spin Hamiltonian parameters indicate the presence of multiple 14N nuclei in the inner coordination sphere of VO 2+ which is corroborated by ENDOR and ESEEM spectra showing resonances attributable to interactions with 14N nuclei. The isotropic superhyperfine coupling component of about 7 MHz determined by ENDOR is consistent with a nitrogen of coordinated histidine imidazole(s). The ESEEM Fourier-transform spectra further support the notion that the VO 2+ substituted enzyme contains inner-sphere nitrogen ligands. The isotropic and anisotropic 14N superhyperfine coupling components are similar to those reported for other equatorially coordinated enzymatic histidine imidazole systems. ESEEM resonances from axial 14N ligands are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call