Abstract

We applied a fluorescein-containing oligonucleotide (ON) to probe surface properties of oxidized graphene (oxo-G) and observed that graphene-like patches are formed upon aging of oxo-G, indicated by enhanced probe binding and by FTIR spectroscopic analysis. By using a recently developed fluorogenic endoperoxide (EP) probe, we confirmed that during the aging process the amount of EPs on the oxo-G surface is reduced. Furthermore, aging was found to strongly affect cell membrane carrier properties of this material. In particular, freshly prepared oxo-G does not act as a carrier, whereas oxo-G aged for 28 days at 4 °C is an excellent carrier. Based on these data we prepared an optimized oxo-G, which has a low-defect density, binds ONs, is not toxic, and acts as cell membrane carrier. We successfully applied this material to design fluorogenic probes of representative intracellular nucleic acids 28S rRNA and β-actin-mRNA. The results will help to standardize oxidized graphene derivatives for biomedical and bioanalytical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.