Abstract

Crystal structures of three oxo complexes of Mo(VI) and W(VI) with α-alkoxycarboxylate ligands were solved, namely [(CH3CH2)4N]2[Mo2O5(Hmal)2(H2O)2] (H3mal = malic acid) (1), Na6[Mo2O5(cit)2)]·10.5H2O (H4cit = citric acid) (2) and Na2[WO2(H2cit)2]·10H2O (3). In 1, dianionic malate ligands adopt a unique bidentate coordination mode via alkoxy and α-carboxylate groups in the oxo-bridged dinuclear anionic complex, in which two terminal oxo ligands and a water molecule complete the distorted octahedral geometry around the Mo(VI) centre. In compound 2, a similar oxo-bridged dinuclear core, [Mo2O5]2+, is present. However, the distorted octahedral geometry of each Mo(VI) is completed by oxygen atoms originating from a fully deprotonated citrate ligand, adopting a tridentate coordination mode. The mononuclear complex 3, with two terminal oxo ligands and four oxygen atoms originating from two dianionic, bidentately coordinated citrate ligands positioned in a distorted octahedral geometry around W(VI), shows the presence of unique icosameric water clusters trapped within the crystal lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.