Abstract

Organic radicals based dynamic covalent chemistry is promising in preparing stimuli-responsive chromic materials, due to their simplicity of dissociation/association, accompanied with distinct color changes during the process. However, suitable organic radicals for dynamic covalent chemistry have not been widely explored yet. Herein, a series of oxindolyl-based mono-radicals (OxRs) with different substituents were successfully synthesized and studied systematically as potential building blocks for stimuli-responsive chromic materials. These OxRs would dimerize spontaneously to form their corresponding dimers. The structures of dimers were unambiguously confirmed through low-temperature 1H NMR and single-crystal X-ray diffraction analyses. Dynamic interconversion between monomers and dimers was achieved by reversible cleavage and recovery of the σ-bond upon soft external stimuli (temperature, pressure, and solvent polarity), accompanied by significant color changes. It is interesting that the stability of the mono-radical could be tuned through changing different substituents, and consequently altering the bond dissociation energy of the dynamic covalent bond between monomers. These new OxRs characterized by appreciable properties are entitled to more opportunities in developing mechanochromic and thermochromic materials, where their responsiveness to stimuli can be readily controlled by the substituents adhered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.