Abstract

Diabetes mellitus, a metabolic disorder, is characterized by a substantial hyperglycaemia. Prevalence of hyperglycaemia for longer period of time can cause nonenzymatic condensation of sugar in blood with amino group of protein and give rise to advanced glycation end products (AGEs). AGEs play a major role in the onset of late diabetic complications including diabetic retinopathy, nephropathy, neuropathy and cardiovascular diseases. There is a need to establish potential therapeutic regimens that can effectively inhibit the formation of AGEs. To this end a series of novel oxindole-based chalcones have been investigated for their antiglycation potential. Analogues 1 (IC50 = 155.22 ± 2.98 µM), 3 (IC50 = 195.95 ± 0.43 µM), 4 (IC50 = 289.47 ± 2.47 µM), 5 (IC50 = 222.44 ± 4.03 µM), 7 (IC50 = 251.27 ± 2.80 µM), and 20 (224.23 ± 1.93 µM) showed potent inhibitory activity against glycation compared to the reference Rutin (IC50 = 294.5 ± 1.5 µM). These results reveal that multiple hydroxyl substituents and their position on the aromatic ring play a key role in inhibitory effect due to their hydrogen bonding potential. The study also reveals the influence of substituents on the binding capabilities and in turn inhibitory potential of different analogues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.