Abstract

Antibody-drug conjugate therapy entails targeted killing of cancer cells with cytotoxic compounds covalently linked to tumor-specific antibodies and shows promise in the treatment of several human cancers. Current antibody-drug conjugate designs that incorporate a disulfide linker between the antibody and cytotoxic drug are inspired by indirect evidence suggesting that the redox potential within the endosomal system is reducing. It is presumed that antigen-dependent endocytosis leads to disulfide linker reduction and intracellular release of free drug, but direct demonstration of such a mechanism is lacking. To determine whether the disulfide N-succinimidyl 4-(2-pyridyldithio)pentanoate (SPP) linker would be reduced during endocytic recycling of the anti-HER2 antibody trastuzumab (Herceptin, Genentech), we synthesized a trastuzumab-SPP-Rhodamine red conjugate and developed a linker cleavage assay by using the self-quenching property of this fluorophore. In breast carcinoma SKBr3 cells, no SPP linker cleavage was observed, as detected by fluorescence dequenching upon internalization. By contrast, the conjugate did display fluorescence dequenching when diverted to the lysosomal pathway by geldanamycin, an effect partly due to proteolytic degradation rather than disulfide reduction. To understand why linker reduction was inefficient, we measured redox potentials of endocytic compartments by expressing a redox-sensitive variant of GFP fused to various endocytic proteins. Unexpectedly, we found that recycling endosomes, late endosomes, and lysosomes are not reducing, but oxidizing and comparable with conditions in the endoplasmic reticulum. These results suggest that intracellular reduction is unlikely to account for the potency of disulfide-linked antibody-drug conjugates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.