Abstract
AbstractRecycling of oxidized sulfur from subducting slabs to the mantle wedge provides simultaneous explanations for the elevated oxygen fugacity (fO2) in subduction zones, their high hydrothermal and magmatic sulfur outputs, and the enriched sulfur isotopic signatures (i.e., δ34S > 0‰) of these outputs. However, a quantitative understanding of the abundance and speciation of sulfur in slab fluids consistent with high pressure experiments is lacking. Here we analyze published experimental data for anhydrite solubility in H2O‐NaCl solutions to calibrate a high‐pressure aqueous speciation model of sulfur within the framework of the deep earth water model. We characterize aqueous complexes, required to account for the high experimental anhydrite solubilities. We then use this framework to predict the speciation and solubility of sulfur in chemically complex fluids in equilibrium with model subducting mafic and ultramafic lithologies, from 2 to 3 GPa and 400 to 800°C at log fO2 from FMQ‐2 to FMQ+4. We show that sulfate complexes of calcium and sodium markedly enhance the stability of sulfate in moderately oxidized fluids in equilibrium with pyrite at fO2 conditions of FMQ+1 to +2, causing large sulfur isotope fractionations up to 10‰ in the fluid relative to the slab. Such fluids could impart oxidized, sulfur‐rich and high δ34S signatures to the mantle wedge that are ultimately transferred to arc magmas, without the need to invoke 34S‐rich subducted lithologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.