Abstract

High density lipoprotein (HDL) particles are made up of lipid and protein constituents and apolipoprotein A-I (apoA-I) is a principal protein component that facilitates various biological activities of HDL particles. Increase in Ox-PL content of HDL particles makes them ‘dysfunctional’ and such modified HDL particles not only lose their athero-protective properties but also acquire pro-atherogenic and pro-inflammatory functions. The details of Ox-PL‐induced alteration in the molecular properties of HDL particles are not clear. Paraoxonase 1 (PON1) is an HDL-associated enzyme that possesses anti-inflammatory and anti-atherogenic properties; and many of the athero-protective functions of HDL are attributed to the associated PON1. In this study we have characterized the physicochemical properties of reconstituted HDL (rHDL) particles containing varying amounts of Ox-PL and have compared their PON1 stimulation capacity. Our results show that increased Ox-PL content (a) modifies the physicochemical properties of the lipid domain of the rHDL particles, (b) decreases the stability and alters the conformation as well as orientation of apoA-I molecules on the rHDL particles, and (c) decreases the PON1 stimulation capacity of the rHDL particles. Our data indicate that the presence of Ox-PLs destabilizes the structure of the HDL particles and modifies their function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.