Abstract

Considerable attention has been focused on both highly oxidized low-density lipoprotein (ox-LDL) and mildly oxidized LDL (mox-LDL) as important risk factors for cardiovascular disease. Further, 5-hydroxytryptamine (5-HT) appears to play a crucial role in the development of atherosclerotic plaque. We assessed the interaction of oxidatively modified LDL and its major oxidative components, ie, hydrogen peroxide (H2O2), lysophosphatidylcholine (LPC), and 4-hydroxy-2-nonenal (HNE) with 5-HT on DNA synthesis in vascular smooth muscle cells (VSMCs). Growth-arrested rabbit VSMCs were incubated in serum-free medium with native LDL, mox-LDL, ox-LDL (all 50 ng/mL), H2O2 (0.5 microM), LPC (1 microM), or HNE (0.1 microM) for 24 hours followed by 5-HT (5 microM) for another 24 hours. DNA synthesis in VSMCs was measured by [3H]thymidine incorporation. Significant effects on [3H]thymidine incorporation were observed in VSMCs incubated with mox-LDL (129%), ox-LDL (129%), H2O2 (119%), LPC (115%), HNE (127%), or 5-HT (183%) in contrast with native LDL (113%). The mitogenic effect of 5-HT was potentiated by mox-LDL, ox-LDL, H2O2, LPC, or HNE (183 to 365%, 274%, 304%, 339%, or 273%, respectively) but not by native LDL (240%). The mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059 (10 microM) significantly inhibited the mitogenic effect of 5-HT but did not influence the effects of mox-LDL, ox-LDL, H2O2, LPC, or HNE. The intracellular antioxidant N-acetylcysteine (400 microM) significantly inhibited the mitogenic effects of mox-LDL, ox-LDL, H2O2, LPC, and HNE but not that of 5-HT. Our results suggest that mox-LDL, ox-LDL, and their major components H2O2, LPC, and HNE act synergistically with 5-HT in inducing VSMC DNA synthesis via MAPK and redox-sensitive pathways, contributing to the development of atherosclerotic plaque.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.