Abstract

Hydrogels are ideal materials for mimicking and engineering soft tissue. Hyaluronic acid is a linear polysaccharide native to the human extracellular matrix. In this study, we first develop and characterize two hydrogel compositions built from oxidized HA and gelatin with and without alginate-di-aldehyde (ADA) crosslinked by ionic and enzymatic agents with potential applications in soft tissue engineering and tissue mimicking structures. The stability under incubation conditions was improved by adjusting crosslinking times. Through large-strain mechanical measurements, the hydrogels' properties were compared to human brain tissue and the samples containing ADA revealed similar mechanical properties to the native tissue specimens in cyclic compression-tension. In vitro characterization demonstrated a high viability of encapsulated mouse embryonic fibroblasts and a spreading of the cells in case of ADA-free samples. Impact statement Brain mimicking materials are required in several medical and industrial fields for the development of safety gear, testing of medical imaging techniques, surgical training, tissue engineering, and modeling of the mechanical behavior of tissues. The materials must resemble the microstructure, chemistry, and mechanical properties of the native tissue extracellular matrix while being adjustable in degradation to suit the various applications. In this article, different methods are used to evaluate a novel hydrogel material and its suitability as brain mimicking matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call