Abstract
Dispersions of graphene oxide (GO) nanoribbons in ionic liquids, ILs (either 1-butyl-3-methylimidazolium chloride (BMIM-Cl-) or 1-butylpyridinium chloride (-Bupy-Cl-)) have been used to assemble modified screen printed electrodes (SPEs). The graphene oxide/ionic liquid dispersions have been morphologically and structurally characterized by the use of several techniques: X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared (FT-IR) spectroscopy, high-resolution-transmission electron microscopy (HR-TEM). The assembled modified SPEs have then been challenged with various compounds and compared to several electro-active targets. In all cases high peak currents were detected, as well as significant potential shifts, especially in the detection of catecholamines and NADH, compared with the bare SPE and the conventional electrodes, such as glassy carbon (GC) and highly oriented pyrolitic graphite (HOPG). This opens the way to the assembly of new types of sensors and biosensors. The enhanced performances observed are attributed to electrocatalytic effects related to the high electrode surface area, to oxygen-assisted electron transfer, as well as to the disordering effect of the ILs, this latter related to the favorable π-π interactions with the ILs and the GO plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.