Abstract

Treatmetn of DNa with any of several agents, including ionizing radiation, hydrogen peroxide, bleomycin, neocarzinostatin and the copper (I) chelate complex of 1,10-phenantroline, produces apurinic/apyrimidinic (AP) sites containing oxidized deoxyribose moieties. These AP sites, which are formed by specific or nonspecific free-radical attack on deoxyribose, have been shown to involve oxidation of deoxyribose at the C-1′, C-2′ or C-4′ position. Oxidized AP sites are generally more susceptible to chemical cleavage than normal AP sites, but are in some cases resistant to cleavage by repair AP endonucleases. Nearly all of the AP sites produced by neocarzinostatin, and a fraction of those produced by bleomycin, are accompanied by closely opposed breaks in the complementary strand. Sequence specificity data strongly implicate oxidized AP sites in neocarzinostatin-induced mutagenesis. The role of AP sites in mutagenesis by the other oxidative mutagens is less clear, although there is in some cases suggestive evidence for such a role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.