Abstract
The electrically pumped vertical-cavity surface-emitting laser (VCSEL) was first demonstrated with metal cavities by Iga (1979); however, the device threshold current was too high. Distributed Bragg reflector cavities proposed by Scifres and Burnham (1975) were adopted to improve the optical cavity loss. Yet, it was not a practical use until the discovery of the native oxide of AlGaAs and the insertion of quantum wells to provide simultaneous current and optical confinement in semiconductor laser by Holonyak and Dallesasse (1990). Later, the first “low-threshold” oxide-confined VCSEL was realized by Deppe (1994) and opened the door of commercial application for a gigabit energy-efficient optical links. At present, we demonstrated that the oxide-confined VCSELs have advanced error-free data transmission [bit-error rate (BER) $\le 10^{-12}$ ]to 57 Gb/s at 25 °C and 50 Gb/s at 85 °C, and also demonstrated that the pre-leveled 16-quadrature amplitude modulation orthogonal frequency-division multiplexing data were achieved at 104 Gbit/s under back-to-back transmission with the received error vector magnitude, SNR, and BER of 17.3%, 15.2 dB, and $3.8\times 10^{-3}$ , respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.