Abstract

Two-dimensional (2-D) device simulation is used to investigate the tunneling current of metal ultra-thin-oxide silicon tunneling diodes with different oxide roughness. With the conformal nature of ultrathin oxide, the tunneling current density is simulated in both direct tunneling and Fowler-Nordheim (FN) tunneling regimes with different oxide roughness. The results show that oxide roughness dramatically enhances the tunneling current density and the 2-D electrical effect is responsible for this increment of tunneling current density. Furthermore, a set of devices with controlled oxide roughness is fabricated to verify the simulation results and our model qualitatively agrees with the experiment results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.