Abstract

Hierarchical anisotropic nanostructured Mg-RE alloys, containing LPSO lamellae and dense nano-precipitates, exhibit superior mechanical properties. However, their reliability as structural materials for long-term service, especially in terms of fatigue, is still a matter of concern. Here, scattered oxide nodules are detected as a special kind of fatigue damage that assists crack initiation, rather than the typical slip-band structure. The LPSO lamellae and dense β′ nano-precipitates lead to the high localization of fatigue damage. The fatigue-induced oxide nodules form and grow within the soft α-Mg layer, but their growth is limited by the adjacent strong LPSO lamellae, resulting in microcrack nucleation. Finally, clusters of microcracks along the LPSO/oxide interface converge to form the trans-granular crack initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call