Abstract

The passivity of a binary alloy is considered in terms of a network of –M–O–M– bridges in the oxide film, where M is the component of the binary alloy which produces passivity. The structure of the oxide is represented by a mathematical graph, and graph theory is used to calculate the connectivity of the oxide, given by the product of the number of edges in the graph and the Randic index. A stochastic calculation is employed to insert ions of the second metal into the oxide film so as to disrupt the connectivity of the –M–O–M– network. This disruption occurs at a critical ionic concentration of the oxide film, which is then related to the concentration of alloying element in the metal alloy by means of experimental surface analysis data. The results of this analysis for Co–Cr and Al–Cr binary alloys are in good agreement with experimental observations. Earlier calculations for Ni–Cr and Fe–Si binary alloys are revised slightly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.