Abstract

Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high-temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21 wt pct Cr-5 wt pct Al-3 wt pct Mo (Kanthal APMT). Aging treatments were performed for 100 to 1000 hours in stagnant air at 300 °C, 400 °C, 500 °C, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call