Abstract
A method is developed for modifying the surface of current collectors in solid-oxide fuel cells (SOFC) prepared from ferrite stainless steel (Crofer22APU). Diffusion of the protective coating material into the Crofer22APU bulk and reverse diffusion of steel components into the coating are studied. The cross-sectional microstructure and composition are studied by the electron-microscopic technique. The elemental composition of the junction between the current collector and the lanthanum-strontium manganite cathode is studied depending on the time of service-life tests in the SOFC working mode (50–6000 h). The formation of the Cr2O3 oxide islet structure on the current collector surface at the steel/coating interface is observed. It is shown that the mutual diffusion of coating components (Ni) and Crofer22APU steel together with the redox reaction at the interface prevent the chromium diffusion to the surface and protect the steel current collector from oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.