Abstract

Tristructural isotropic (TRISO) fuel particles have been primarily developed for high-temperature gas-cooled nuclear reactors and can be subjected to oxidizing environments for extended periods in an off-normal accident scenario. Surrogate TRISO fuel particles were oxidized in air at 1,000 or 1,100 °C for up to 120 h. The oxide scale morphology and thickness were studied via scanning electron microscopy, focused ion beam, and atomic force microscopy. TRISO particles oxidized at 1,100 °C exhibited a highly crystalline oxide scale, which led to significant cracking and irregularly shaped closed porosity, whereas those oxidized at 1,000 °C possessed a primarily amorphous oxide scale, which contained small, rounded internal pores and no larger defects. The observed phenomena deviated from the expected behavior based on models for oxide growth on flat-plate and fiber SiC. The oxidation kinetics of TRISO fuel particles in high-temperature air were investigated without mechanically deforming the surface and were analyzed with respect to oxide morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call