Abstract

Oxide dispersion strengthened nickel (ODS-Ni) electrodeposits were fabricated to net shape in a nickel sulfamate bath using the LIGA process. A 20 g/l charge of 10 nm Al{sub 2}O{sub 3} powder was suspended in the bath during electrodeposition to produce specimens containing an approximately 0.001-0.02 volume fraction dispersion of the alumina particulate. Mechanical properties are compared to baseline specimens fabricated using an identical sulfamate bath chemistry without the Al{sub 2}O{sub 3} powder charge. Results reveal that the as-deposited ODS-Ni exhibited significantly higher yield strength and ultimate tensile strength than the baseline material. This increase in as-deposited strength is attributed to Orowan strengthening. The ODS-Ni also showed improved retention of room temperature strength after annealing over a range of temperatures up to 600 C. Microscopy revealed that this resistance to anneal softening was due to an inhibition of grain growth in the presence of the oxide dispersion. Nanoindentation measurements revealed that the properties of the dispersion strengthened deposit were uniform through its thickness, even in narrow, high aspect ratio structures. At elevated temperatures, the strength of the ODS-Ni was approximately three times greater than that of the baseline material although with a significant reduction in hot ductility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call