Abstract

We have studied the chemical and physical properties of silicon oxide films plasma deposited from TEOS (tetraethoxysilane), to gain an understanding of the origins of (1) step coverage and (2) film stability. TEOS was diluted in helium/oxygen mixtures and deposited as a function of discharge frequency (150 kHz and 14 MHz) and 0<sub>2</sub> flow in a parallel plate reactor. The typical deposition conditions were 1 torr total pressure, 320°C substrate temperature, 1 -9% TEOS, 1 -80% 0<sub>2</sub>, and -0.1 W/cm<sup>2</sup> discharge power. Films deposited at high frequency with excess oxygen were generally oxygen-rich, chemically unstable and hygroscopic, while films deposited at low frequency were stable to moisture and slightly deficient in oxygen. However, coverage profiles of high frequency films showed an unusual degree of directionality, which could be used to advantage for the coating of high aspect ratio features. We suggest that a judicious combination of high and low frequency discharges may improve film properties while maintaining directional step coverage. Isotopic labeling experiments were performed using <sup>18</sup>0<sub>2</sub> to gain insight into the origins of the oxygen that is contained in these PECVD films. Complete isotopic scrambling was not observed. Film composition data suggest that there is one tenacious Si-0 bond which remains with the silicon from the original TEOS molecule during the reaction to form Si0<sub>2</sub>.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call