Abstract

Oxidative stress has been implicated in the pathogenesis of a number of diseases including Alzheimer's disease (AD). The oxidative stress hypothesis of AD pathogenesis, in part, is based on beta-amyloid peptide (Abeta)-induced oxidative stress in both in vitro and in vivo studies. Oxidative modification of the protein may induce structural changes in a protein that might lead to its functional impairment. A number of oxidatively modified brain proteins were identified using redox proteomics in AD, mild cognitive impairment (MCI) and Abeta models of AD, which support a role of Abeta in the alteration of a number of biochemical and cellular processes such as energy metabolism, protein degradation, synaptic function, neuritic growth, neurotransmission, cellular defense system, long term potentiation involved in formation of memory, etc. All the redox proteomics-identified brain proteins fit well with the appearance of the three histopathological hallmarks of AD, i.e., synapse loss, amyloid plaque formation and neurofibrillary tangle formation and suggest a direct or indirect association of the identified proteins with the pathological and/or biochemical alterations in AD. Further, Abeta models of AD strongly support the notion that oxidative stress induced by Abeta may be a driving force in AD pathogenesis. Studies conducted on arguably the earliest stage of AD, MCI, may elucidate the mechanism(s) leading to AD pathogenesis by identifying early markers of the disease, and to develop therapeutic strategies to slow or prevent the progression of AD. In this review, we summarized our findings of redox proteomics identified oxidatively modified proteins in AD, MCI and AD models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call