Abstract

In this work, the attention is focused on UVA-photosensitized reactions triggered by a DNA chromophore-containing lesion, namely 5-formyluracil. This is a major oxidatively generated lesion that exhibits an enhanced light absorption in the UVB-UVA region. The mechanistic study combining photochemical and photobiological techniques shows that irradiation of 5-formyluracil leads to a triplet excited state capable of sensitizing formation of cyclobutane pyrimidine dimers in DNA via a triplet-triplet energy transfer. This demonstrates for the first time that oxidatively generated DNA damage can behave as an intrinsic sensitizer and result in an important extension of the active fraction of the solar spectrum with photocarcinogenic potential. Overall, this raises the question of an aggravated photomutagenicity of the 5-formyluracil lesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.