Abstract
Search for the formation of oxidatively base damage in cellular DNA has been a matter of debate for more than 40 years due to the lack of accurate methods for the measurement of the lesions. HPLC associated with either tandem mass spectrometry (MS/MS) or electrochemical detector (ECD) together with optimized DNA extraction conditions constitutes a relevant analytical approach. This has allowed the accurate measurement of oxidatively generated single and clustered base damage in cellular DNA following exposure to acute oxidative stress conditions mediated by ionizing radiation, UVA light and one-electron oxidants. In this review the formation of 11 single base lesions that is accounted for by reactions of singlet oxygen, hydroxyl radical or high intensity UVC laser pulses with nucleobases is discussed on the basis of the mechanisms available from model studies. In addition several clustered lesions were found to be generated in cellular DNA as the result of one initial radical hit on either a vicinal base or the 2-deoxyribose. Information on nucleobase modifications that are formed upon addition of reactive aldehydes arising from the breakdown of lipid hydroperoxides is also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.