Abstract

Methylmercury (MeHg), a potent neurotoxicant, easily passes through the blood–brain barrier and accumulates in brain causing severe irreversible damage. However, the underlying neurotoxic mechanisms elicited by MeHg are still not completed defined. In this study, we aimed to investigate the in vitro toxic effects elicited by crescent concentrations (0–1500 μM) of MeHg on creatine kinase (CK) activity, thiol content (NPSH) and protein carbonyl content (PCC) in mouse brain preparations. In addition, CK activity, MTT reduction and DCFH-DA oxidation (reactive oxygen species (ROS) formation) were also measured in C6 glioma cell linage. CK activity was severely reduced by MeHg treatment in mouse brain preparations. This inhibitory effect was positively correlated to the MeHg-induced reduction of NPSH levels and increment in PCC. Moreover, the positive correlation between brain CK activity and NPSH levels was observed at either 15 or 60 min of MeHg pre-incubation. In addition, MeHg-treated C6 cells showed also a significant inhibition of CK activity at MeHg concentrations, as low as, 50 μM in parallel to reduced mitochondrial function and increased ROS production. Taking together, these data demonstrate that MeHg severely affects CK activity, an essential enzyme for brain energy buffering to maintain cellular energy homeostasis. This effect appears to be mediated by oxidation of thiol groups that might cause subsequent oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.