Abstract

Maternal diabetes induces neural tube defects, and oxidative stress is a causal factor for maternal diabetes-induced neural tube defects. The redox gene nuclear factor erythroid 2-related factor 2 is the master regulator of the cellular antioxidant system. In this study, we aimed to determine whether maternal diabetes inhibits nuclear factor erythroid 2-related factor 2 expression and nuclear factor erythroid 2-related factor 2-controlled antioxidant genes through the redox-sensitive miR-27a. We used a well-established type 1 diabetic embryopathy mouse model induced by streptozotocin for our invivo studies. Embryos at embryonic day 8.5 were harvested for analysis of nuclear factor erythroid 2-related factor 2, nuclear factor erythroid 2-related factor 2-controlled antioxidant genes, and miR-27a expression. To determine if mitigating oxidative stress inhibits the increase of miR-27a and the decrease of nuclear factor erythroid 2-related factor 2 expression, we induced diabetic embryopathy in superoxide dismutase 2 (mitochondrial-associated antioxidant gene)-overexpressing mice. This model exhibits reduced mitochondria reactive oxygen species even in the presence of hyperglycemia. To investigate the causal relationship between miR-27a and nuclear factor erythroid 2-related factor 2 invitro, we examined C17.2 neural stem cells under normal and high-glucose conditions. We observed that the messenger RNA and protein levels of nuclear factor erythroid 2-related factor 2 were significantly decreased in embryos on embryonic day 8.5 from diabetic dams compared to thosefrom nondiabetic dams. High-glucose also significantly decreased nuclear factor erythroid 2-related factor 2 expression in a dose- and time-dependent manner in cultured neural stem cells. Our data revealed that miR-27a was up-regulated in embryos on embryonic day 8.5 exposed to diabetes, and that high glucose increased miR-27a levels in a dose- and time-dependent manner in cultured neural stem cells. In addition, we found that a miR-27a inhibitor abrogated the inhibitory effect of high glucose on nuclear factor erythroid 2-related factor 2 expression, and a miR-27a mimic suppressed nuclear factor erythroid 2-related factor 2 expression in cultured neural stem cells. Furthermore, our data indicated that the nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1 were down-regulated by maternal diabetes in embryos on embryonic day 8.5 and high glucose in cultured neural stem cells. Inhibiting miR-27a restored expression of glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1. Overexpressing superoxide dismutase 2 reversed the maternal diabetes-induced increase of miR-27a and suppression of nuclear factor erythroid 2-related factor 2 and nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes. Our study demonstrates that maternal diabetes-induced oxidative stress increases miR-27a, which, in turn, suppresses nuclear factor erythroid 2-related factor 2 and its responsive antioxidant enzymes, resulting in diabetic embryopathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call