Abstract

BackgroundPOLG-related disorders are a group of heterogeneous diseases characterized by an overlapping clinical presentations and associated with mutations in the POLG gene. POLG codes for the catalytic subunit of mitochondrial polymerase gamma (POLG), essential for mitochondrial DNA (mtDNA) replication and repair.Studies on mutator POLG mice showed an increase in oxidative stress and apoptosis.In this regard we analysed the involvement of POLG mutations in the apoptotic regulation, evaluating apoptosis in peripheral blood lymphocytes (PBLs) from patients with POLG-related diseases. MethodsCells were cultured under basal conditions and with 2-deoxy-d-ribose (dRib), a reducing sugar that induces apoptosis by oxidative stress. Apoptosis rate was assessed by flow cytometry. Phosphatidylserine translocation, mitochondrial membrane depolarization and caspase 3 activation were also analysed. ResultsOur data showed higher percentages of apoptosis after dRib treatment in patients with POLG mutations than in controls, while under basal culture conditions, apoptosis levels were similar in the two groups. ConclusionsCells with POLG mutations are more sensitive than control cells to oxidative stress-induced apoptosis, confirming that mtDNA mutations may have a role in mitochondrial apoptosis pathway. We also suggest that redox state homeostasis may play a crucial role in phenotypic expression of POLG-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call