Abstract

It is well established that aluminum (Al) is a neurotoxic agent that induces the production of free radicals in brain. Accumulation of free radicals may cause degenerative events of aging such as Alzheimer's disease. On the other hand, melatonin (Mel) is a known antioxidant, which can directly act as free radical scavenger, or indirectly by inducing the expression of some genes linked to the antioxidant defense. In this study, AbetaPP female transgenic (Tg2576) (Tg) and wild-type mice (5 months of age) were fed with Al lactate supplemented in the diet (1 mg Al/g diet). Simultaneously, animals received oral Mel (10 mg/kg) dissolved in tap water until the end of the study at 11 months of age. Four treatment groups were included for both Tg and wild-type mice: control, Al only, Mel only, and Al+Mel. At the end of the period of treatment, hippocampus was removed and processed to examine the following oxidative stress markers: reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and thiobarbituric acid reactive substances (TBARS). Moreover, the gene expression of Cu-ZnSOD, GR, and CAT was evaluated by real-time RT-PCR. Aluminum concentration in hippocampus was also determined. The biochemical changes observed in this tissue suggest that Al acts as a pro-oxidant agent. Melatonin exerts an antioxidant action by increasing the mRNA levels of the antioxidant enzymes SOD, CAT, and GR evaluated in presence of Al and Mel, with independence of the animal model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.