Abstract
Aging is associated with increased oxidative stress, whereas systematic exercise training has been shown to improve quality of life and functional performance of the aged. This study aimed to evaluate responses of selected markers of oxidative stress and antioxidant status in inactive older men during endurance training and detraining. Nineteen older men (65-78 yr) were randomly assigned into either a control (C, N = 8) or an endurance-training (ET, N = 11, three training sessions per week, 16 wk, walking/jogging at 50-80% of HR(max)) group. Before, immediately posttraining, and after 4 months of detraining, subjects performed a progressive diagnostic treadmill test to exhaustion (GXT). Plasma samples, collected before and immediately post-GXT, were analyzed for malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) levels, total antioxidant capacity (TAC), and glutathione peroxidase activity (GPX). ET caused a 40% increase in running time and a 20% increase in maximal oxygen consumption (VO(2max)) (P < 0.05). ET lowered MDA (9% at rest, P < 0.01; and 16% postexercise, P < 0.05) and 3-NT levels (20% postexercise, P < 0.05), whereas it increased TAC (6% at rest, P < 0.01; and 14% postexercise, P < 0.05) and GPX (12% postexercise, P < 0.05). However, detraining abolished these adaptations. ET may attenuate basal and exercise-induced lipid peroxidation and increase protection against oxidative stress by increasing TAC and GPX activity. However, training cessation may reverse these training-induced adaptations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.