Abstract
Epidemiological studies have suggested that phthalate exposures are associated with increased risks of thyroid cancer and benign nodule, while the underlying mechanisms are largely unknown. Here, we explored the mediation effects of oxidative stress (OS) biomarkers in the associations between phthalate exposures and the risks of thyroid cancer and benign nodule. Urine samples collected from 143 thyroid cancer, 136 nodule patients, and 141 healthy controls were analyzed for 8 phthalate metabolites and 3 OS biomarkers [8-hydroxy-2-deoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), and 8-iso-prostaglandin F2α (8-isoPGF2α)]. Multivariable linear or logistic regression models were used to explore the associations of OS biomarkers with phthalate metabolite concentrations and the risks of thyroid cancer and nodule. The mediation role of OS biomarkers was also investigated. Urinary monoethyl phthalate (MEP), monomethyl phthalate (MMP), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP), mono (2-ethylhexyl) phthalate (MEHP), and mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) were positively associated with at least 2 OS biomarkers (all P-values<0.01), and part of these positive associations varied in different subgroups. All 3 OS biomarkers were positively associated with the risks of thyroid nodule and cancer (P-values<0.001). The mediation analysis showed that OS biomarkers significantly mediated the associations between urinary MEHOP concentration and nodule, as well as between urinary MMP, MEHP, and MEHHP concentrations and cancer and nodule, with the estimated proportions of mediation ranging from 15.8% to 85.6%. Our results suggest that OS is a potential mediating mechanism through which phthalate exposures induce thyroid carcinogenesis and nodular formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.