Abstract

Arsenic exposure is associated with an increased risk of vascular disorders, and results in increased oxidative stress in endothelial cells and vascular smooth muscle cells (VSMCs). Since oxidative stress is involved in regulating the expression of genes related to atherogenesis, we investigated its involvement in the enhanced expression of three atherosclerosis-related genes coding for heme oxygenase-1 (HO-1), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in VSMCs treated with inorganic sodium arsenite (iAs). In human VSMCs (hVSMCs) and rat VSMCs (rVSMCs), HO-1, MCP-1, and IL-6 mRNA levels were significantly increased by iAs treatment. An increase in HO-1 protein levels in hVSMCs was confirmed by Western blotting technique, while increased MCP-1 and IL-6 secretion by hVSMCs was demonstrated by enzyme-linked immunosorbent assay. Although modulators of oxidative stress inhibited this iAs-induced increase in the expression of these three genes, different modulators had differential effects. In iAs-treated rVSMCs, catalase, dimethylsulfoxide, and L-omega-nitro-L-arginine significantly inhibited the increase in expression of all three genes, allopurinol inhibited the increase in MCP-1 and IL-6 expression, but had no effect on HO-1 expression, while superoxide dismutase had no significant effect on HO-1 expression, but had an inhibitory effect on IL-6 expression and a stimulatory effect on MCP-1 expression. Therefore, iAs may enhance the expression of HO-1, MCP-1, and IL-6 in VSMCs via different reactive oxygen molecules. Furthermore, using tin protoporphyrin IX (SnPP) and anti-MCP-1 antibody to abolish iAs-induced HO-1 and MCP-1 activity, respectively, shows that HO-1 has protective effect against iAs-induced injury in VSMCs and MCP-1 is chemoattractive to human monocytes, THP-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call