Abstract
Heat stress causes reversible changes in tight junction proteins in immature Sertoli cells via inhibition of the AMPK signaling pathway; these effects are accompanied by an increase in the early apoptotic rate and decrease in the cell viability of Sertoli cells. Since heat stress is known to also cause oxidative damage, in the present study, we investigated whether the earlier mentioned effects of heat stress were brought about via the induction of oxidative stress in boar Sertoli cells. Immature Sertoli cells obtained from 3-week-old piglets were subjected to heat treatment (43 °C, 30 min), and the percentage of ROS-positive cells, the malonaldehyde (MDA) concentration, and the activity of the antioxidases, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) were measured. Next, the Sertoli cells were treated with N-acetyl-l-cysteine (NAC) (1 mmol/L, 2 h), an antioxidant agent, before they were exposed to heat stress. The effects of NAC on ROS accumulation, MDA levels, antioxidase activity, the CaMKKβ-AMPK signaling pathway and expression of tight junction proteins were assessed. The results showed that heat stress reversibly increased the percentage of ROS-positive cells and MDA levels, and decreased the activity of SOD, GSH-Px, and CAT. Pretreatment with NAC abrogated these effects of heat stress. Additionally, NAC reversed the heat stress-induced decrease in the expression of CaMKKβ and dephosphorylation of AMPK. NAC also obviously rescued the heat stress-induced downregulation of tight junction proteins (claudin-11, JAM-A, occludin, and ZO-1) both at the mRNA and protein level. In conclusion, the findings indicate that oxidative damage participates in heat stress-induced downregulation of tight junction proteins in Sertoli cells by inhibiting the CaMKKβ-AMPK axis. Further, NAC reversed the effects of heat stress on tight junction proteins; this means that it has potential as a protective agent that can prevent reproductive dysfunction in boars under conditions of heat stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.