Abstract

Oxidative stress arises when cellular antioxidant defences become overwhelmed by a surplus generation of reactive oxygen species (ROS). Once this occurs, many cellular biomolecules such as DNA, lipids, and proteins become susceptible to free radical-induced oxidative damage, and this may consequently lead to cellular and ultimately tissue and organ dysfunction. Mitochondria, as well as being a source of ROS, are vulnerable to oxidative stress-induced damage with a number of key biomolecules being the target of oxidative damage by free radicals, including membrane phospholipids, respiratory chain complexes, proteins, and mitochondrial DNA (mt DNA). As a result, a deficit in cellular energy status may occur along with increased electron leakage and partial reduction of oxygen. This in turn may lead to a further increase in ROS production. Oxidative damage to certain mitochondrial biomolecules has been associated with, and implicated in the pathophysiology of a number of diseases. It is the purpose of this review to discuss the impact of such oxidative stress and subsequent damage by reviewing our current knowledge of the pathophysiology of several inherited mitochondrial disorders together with our understanding of perturbations observed in the more commonly acquired neurodegenerative disorders such as Parkinson’s disease (PD). Furthermore, the potential use and feasibility of antioxidant therapies as an adjunct to lower the accumulation of damaging oxidative species and hence slow disease progression will also be discussed.

Highlights

  • Up to 90% of cellular metabolic energy is generated by mitochondria via the oxidative phosphorylation pathway [1]

  • The tricarboxylic acid (TCA) cycle generates a small amount of energy via substrate level phosphorylation, the vast proportion of metabolic energy is harnessed via the generation of reducing power and subsequent donation of high energy electron pairs through the electron carriers NADH and FADH2, which feed directly into mitochondrial respiratory chain (MRC)

  • The MRC is composed of four multi-subunit proteins; complex I (NADH: ubiquinone reductase; EC 1.6.5.3), complex II, complex III, and complex IV [2], each of which contain a variety of cofactors such as hemes, J

Read more

Summary

Introduction

Up to 90% of cellular metabolic energy is generated by mitochondria via the oxidative phosphorylation pathway [1]. FebniymFegznimuagyznrumyaegrmnaea1gtan.ia1tcemdFein.sAcniiaeagsAzFnmansu-yisdegntrmgucieas-etotuhdanciap1oxtehsreei.eesceixmepdeAni(am-Cedad1dnansunaet.taecip,idnotthnAcZeixeetdtcnnimunddd-esaSustaneefcnOutnendsfhittceDnpudeednc)euspmree,ucernlfraeiepeosdalnernie.sxetdosecr.irieoTscxltdTitsxheihh.eihdetusdTheeneenehtedhumedpmdedlitmpeasiiiimdepismmsrttatimnohalimtotaioastuzchwuetccmneuhytsthwhwlagaaymtoouosaasytaanenrytnhesandyeadededo(troesMiiru(ffroeasc(MipiclenMfmaame(aOa--lCdlSnidnmtntiOhOo-ut2te-oScoiiDiwpS,toshOwco)̄2ZOeoxsahcauDnninioiyDtsohddbsder-)nsorraSs)oeseicunbdanOqunofolydbutrprtbDfmiegsprdasncleie)escueleaiote,qruolttqf,lyapafouerppurtnazcpcfnheeepdeirohdinneecreonineoccerotnevrt-at,rlnsxhde,elyla.zyrdreiepgdtdiTpazcenreneceidiedorihncnocnaounieeat-dxclncordldvlie-atmvdfdHniietelgrasmietropeei2smergOttnepeesateone2ue(unetdaceGneperdnntdhriaPeleattddayoehrdoxrtsotoeen)anetiirx.rhHnctotdeiHiebdatndo(rsi2yelrMOiu2nuasaOgpc2ulnnaeee2epO-dnndrSieetoedOhrt2tirxtooheaDihitxserdthwe)iiiseeobdrrauinyoertbersarencbqodyupegtphnleuetrlti,yratzchioinoncnv-deereptpeeedrnotdxo wlipw[h1ii3hdc]isdIh.ctidI[hmdFesFt1icimnisius3caagsizmsa]urmnntuy.w[octhntg1uromhtxuaF3heehaintsiet]nduaianntae.ecrru1satdrIhesdimFiett(.btnesuciiCuchimdeIvuies(Acsosantr(anCeu-etciCtcnooasdr/nchtzr,riunrhmernsnusoeitmiyZiyin,ceim,grptm,tnmouhnrdZmtfraoZeuoixhattie-ointainnrsosrnacSninnmecldatoe-trescdO-liioarSetaoes,aScesliaieur,OtlmvDentniOdtne(eaetti-netibCtDoti)ddtrclnDlni,cyoesoyduitset)ataosl)hulsi,rrpoel,t,oincbueneeecanefbZeraxdsadolepeanptdevynsnniunrvlloueda,doetedidioc-ctrhesceevrraSsadheotlvoelertvnueOheloonisxuhenpeestervp.eddttilDeesdpddrdhednhTduaw[onord)tsye1raahtelpml,huxouttdahoesu3hftmearhiailmaerpmdldoou]tdatindtanmti.cedlaaiigumochdaotatpsmcIhrguhtgFtigetvmttceeooatetacieteieyausthocxohettvtitlituii.htaesacamyioororeeooneedttThcwltpcfnnnlano/ycprchtaecyhocvnoeresuhaauoecieurnaeloedimiforynlcefceldlrrrtudemdutlimefudrdmRRuiiould(roduocsumaluMlumiOiRuliuOlmefarasosntucasMcatdlSocOcmlanrtuiemcSaruilteocriRnetOd-aeo(totloSdtnhiimSooih,aCila(rmvlntnyoxoOteoeotst2oow(ieiotcrniofnemxtdcoirDfriuuoionldswtehaaoisxwenletni)fdeot(taoorhtsdsliccaieMsriladvutunelatfRouat,roeeieaetseebocdbtailnferdnlesObclntirenesetryrsOh-vsdtuycdieitSfbslShc,lbvoaarereiqluac,Ooygeenet2elcysredausoei(pldsvoqsesDignusofiuegstopenu,)srwuerlttcrnx)lsueatvgfeihasdouellfriitrredeaurtiudreernloDsteseah,tiyedabrcsdedrtRcrsateNiitaeplshh)ranzoscdlaNhtieleuAdicnii)ornabirromaintqovsSsooonauaid,tegyodporncuceppndrddva(ri-aepretegnnDpdrndReegucihitlsneoilcecipoeretRgmueptNNerctetrgrtaarepreoslosteteNa,eyiiltle,raieSAxsdDnramy[onoostan1riozSsscchdexest,np4Nb(tdxiocppicasoir)n,nivapee(1ieonnudeuaeadAesconi5rocHlnadltvactemi-tl]aifoiisrrdtie,s.ueiometl2nst(eoeteiOrrReurnGelsppgepRsdstaeosap(,iel2iueOsj,(PardGNarsoniaerGdsrenopMxtsar)tnenroSPsmiiSiPet)etttsddvxo.xeoiRhraxsu(iovee)oni(doenu).CntHnlnlex.rhtaxedlstsiiot2seibdcttnsfOiderfirluunysteargieor2ua(pnglntseGsetepihicsdisnasidPevie)ttst,nhrixssie)ooive)ennx.rsecitfbdlarrsuyeeentdrsedesin)srtsagho)dirDsicRNianNlAtSsu,p ocoxocwnoixdtnhirdatirtcabiiIhtuvbtivetucio/saetdro/nw[naytn1rmhii3yhitfntera]aIirnfog.dccoauehstiFtscshoanwautccitrcostiairloivrtlitrnvomnhebeteveotietiinsrhdrensottdwmtierhaslreil,cteepsoeusetschdrsasplsryese,ta,ieh,ocmpdtccoohroi,aotiptuiouneunohlinpcsavlsdltdyehtuieeasbldyrdllleipiecyesoinaamoliarlgmdiocoondepallgdvetaaoturstocygueIgsoitsndboeycieoonmutiffttmisodthotoohvplfoaxeinpcasarvaimdaeyrtriaornariilarorleettfftugiiheavudvfoRrdelceeisoauetMOmtsroisMwaotnrSrmcRioe,hRcnctusC(eotoeushCrohlrlmaekltxfeieunhtnurficeuduidloepuntadwlneasolcparuedtclatteaimbsietivndoitaos,nohgeedonnintqennolidusaeaaocpoteaccflnlarhnfuquntedicthyumddlsqtemeshstiuspirpnh)toeoe,iahlagisroeltdisiehcoencrsDutodigdcnfpliRNolyairndhusreNftyooAidueatssoSfrunirio,xdondrnvrprl(iaegnoaddncrmdrgeroeaiDsmyliitrlttaocru[oNiesaaoy1uvlfialy[s4nAsear1ba,s1i4b,etspn5i,atpe1vaher]nr5.eecaeomd]sir.etssmielasttiriaej,panoednjirrsoddesaras)nsnududltbialnsciepgqqiuduiinserendt diso mol [13I].nInFthutihrstoihsrxeirrdvemiavetiowievrw,ee,t/,hnitetihtreiposopsbtaoeettnilevitneieavtilseatdilrmeimtsphdsap,aactacmtoctoatuhgfoledeofaxwolceixdcialiuadldmtbaitevtouievdliaemiststiscrpoteunrasseissrsoesafdna,tdnMhindesRcsusleCubusdfbfreuisenqeneugqceurtlinaeeosdtnnsimtocaanmonlslodesllecpetuahcerlucinasilertaisrfna,rnaotrdnumedsrcunoeclultemlirulnlaulkgaynlraiobrnwe laedmgaejoorf the pa ddaomaxmiadgaagetievwweci/loinllnlibttbreroeibsddauiitstsicovcurueyssssfteearddce,ts,osiirn,ncctolluuutddhldiiennpglgeaalltedehssostsopoonhnismyslseplieoaaarlionrnegtdtyfrfoMorfomRmvCaoruoiforuukrnsncktoininwoohnwleeradlientgeddedgoteahfniotsdhf ieatnhcpqetauutprhinraoetpmhdhoadypyishsiobyorelsdoiaogelrymosgoa[y1fjo4ar,15]. In thdisamreavgieww,iltlhbeepdoitsecnutsiasel dim, ipncalcutdoifnogxliedsasotinvse lsetarrensts farnodmsouubrsekqnuoewnltedmgoeleocfutlhaer paantdhocpelhluylsaior logy of a damage will be discussed, including lessons learnt from our knowledge of the pathophysiology of a. Of a number of inherited mitochondrial disorders together with our growing understanding of perturbations observed in the more commonly acquired neurodegenerative disorders. We will consider the potential use of antioxidant therapies as an adjunct to standard pharmacological care as a means to limit free radical accumulation and thereby attempt to slow disease progression

Inherited Mitochondrial Disorders
An Inherited Mitochondrial Lipid Disorder
An Inherited Mitochondrial Protein Disorder
Coenzyme Q10
Other Antioxidants
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call