Abstract

Background/Aims: Pathogenesis of non-alcoholic steatohepatitis (NASH) remains poorly understood. Cytochrome P450 2E1 (CYP 2E1), cytokines, oxidative stress and activation of hepatic stellate cells seem to play a role in this process. The aim was to determine the potential implication of these factors in the progression from uncomplicated steatosis to steatohepatitis with progressive fibrosis. Methods: Animals were fed a standard diet, a 5% orotic acid-diet (OA) developing hepatic steatosis, or the methionine-choline deficient (MCD) diet inducing steatohepatitis for 2 and 6 weeks. Lipid peroxidation, CYP 2E1 expression and activity, expression of UCP-2, interleukin (IL)-6, transforming growth factor (TGF)β1, KLF6 mRNAs, and activation of hepatic stellate cells were examined by gas chromatography, high-performance liquid chromatography, Western blotting, quantitative polymerase chain reaction and immunohistochemistry. Results: Lipid peroxidation increased in the MCD model whereas only minor changes occurred in the OA model. KLF6 and TGFβ1 mRNAs were selectively up-regulated in MCD animals. Stellate cell activation, inflammation and collagen deposition only occurred in the MCD group. CYP 2E1 expression and activity increased in the OA group while both decreased in MCD animals. UCP-2 and IL-6 mRNA increased in both groups. Conclusions: In the context of steatosis, lipid peroxidation is associated with inflammation and stellate cell activation with concomitant increase in TGFβ1 production, possibly through up-regulation of KLF6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.