Abstract

Selenium (Se) deficiency causes injury of diversified tissues and cells, including livers, hearts, skeletal muscles, and erythrocytes. The aim of the present study is to explore the molecular mechanism of erythrocyte hemolysis due to Se deficiency in broilers. One hundred and eighty broilers (male/female, 1 day old) were randomly divided into two groups and fed with either a normal Se content diet (C group, 0.2 mg Se/kg) or a Se-deficient diet (ED group, 0.008 mg Se/kg) for 45 days. During the trial period of 15-30 days, biological properties such as osmotic fragility, fluidity, phospholipid components of cell membrane, adenosine triphosphatase activities, and antioxidant function of erythrocytes in broilers were examined. Moreover, the messenger RNA (mRNA) expressions of genes associated with inflammation, glycometabolism, and avian uncoupling protein (avUCP) were detected. We found that compared with the C group, hemolysis rate, degree of polarization, and microviscosity of erythrocytes were increased in broilers of the ED group. The composition of erythrocyte membrane lipids was changed. Meanwhile, the antioxidant function of erythrocytes was weakened and mRNA levels of inflammatory genes were stimulated by Se deficiency (p < 0.05). In addition, mRNA expressions of rate-limiting enzymes in glycometabolism were effected and avUCP mRNA level was downregulated (p < 0.05) in the ED group. It has been concluded from the results that oxidative stress, inflammatory response, and glycometabolism disorder lead to erythrocyte hemolysis by changing the structure and function of erythrocyte membrane in ED broilers suffered from Se deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.