Abstract

Prunus necrotic ringspot rvirus (PNRSV) was able to invade the immature apricot seed including the embryo. The amount of virus was very high inside the embryo compared with that present in the cotyledons. PNRSV infection produced an oxidative stress in apricot seeds as indicated by the increase in lipid peroxidation, measured as thiobarbituric acid-reactive substances. This lipid peroxidation increase was parallelled with an imbalance in the seed antioxidant enzymes. A significant decrease in the ascorbate-GSH cycle enzymes as well as in peroxidase (POX) activity took place in infected seeds, suggesting a low capability to eliminate H2O2. No changes in superoxide dismutase (SOD) or catalase activity were observed. A significant decrease in polyphenoloxidase (PPO) activity was also observed. Native PAGE revealed the presence of three different SOD activity bands in apricot seeds: a Mn-containing SOD and two CuZn-containing SODs. Only an isozyme with catalase, glutathione reductase (GR) or PPO activity was detected in both healthy and infected apricot seeds. Regarding POX staining, three bands with POX activity were detected in native gels in both healthy and infected seeds. The gel results emphasise that the drop detected in POX, GR and PPO activities in PNRSV-infected apricot seeds by kinetic analyses was also evident from the results obtained by native PAGE. The oxidative stress and the imbalance in the antioxidant systems from PNRSV-infected apricot seeds resemble the hypersensitive response observed in some virus-host interactions. This defence mechanism would inactivate PNRSV during seed formation and/or the storage period or even during seed germination. Those results can explain the decrease in seed germination and the low transmission of PNRSV by seeds in apricot trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call