Abstract

Bacteria thriving in the mangrove ecosystem are major drivers of elemental cycles. Climate change and environmental stressors (heavy metals) influence the performance of these microorganisms, thereby affecting the biogeochemical cycle. The present study reports the genotoxic effect of climatic and heavy metal stressors on mangrove bacteria and their adaptation strategies. Comparative analysis between two bacterial strains, Bacillus stercoris GST-03 and Pseudomonas balearica DST-02 isolated from the Bhitarkanika mangrove ecosystem, Odisha, India, showed cellular injuries in response to various stressors as evident by declined growth, elevated levels of reactive oxygen species (ROS) and resulted DNA damage. B. stercoris GST-03 showed more tolerance towards acidic pH, whereas P. balearica DST-02 showed higher tolerance towards UV exposure and heavy metals (Lead and Cadmium). The adaptation strategies of the strains revealed a significant role of GST in ROS scavenging activity and the involvement of Nucleotide excision repair or SOS response pathways. However, irreparable DNA damage was observed at pH 9 and 200 ppm Cd in B. stercoris GST-03, and at pH 4, 1000 ppm of Pb and 200 ppm of Cd in P. balearica DST-02. The current findings provide a broad overview of bacterial response and adaptability concerning future climate and environmental changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call