Abstract

Environmental contamination with heavy metals is of concern as plants have the ability to absorb chemical toxicants facilitating the entry of toxic metals into the food chain. Lettuce (Lactuca sativa Linn.) was cultured in four nutrient solutions containing different concentrations of cadmium (0, 3, 6, and 9 mmol). The impact of heavy metal on the morphological features, antioxidant properties and antioxidant enzymes activity were investigated with primary focus on superoxide dismutase, ascorbate peroxidase, peroxidase and catalase enzymes. In silico methods were utilized in the study of the genes of these enzymes. Significant changes were observed in the morphological features of the plant with plants appearing stunted, more spherical and yellow in colour. A decrease in the dry mass of the plant was also detected. The Translocation factor (TF) for cadmium was significantly high in lettuce. Enhanced antioxidant enzymatic activity suggests that these enzymes are integrally involved in the defense mechanism of the plant to heavy metal stress. Also observed was an increase in total soluble protein, and total phenolic content. Total flavonoid content was not significantly affected. Fourteen genes encoding for ascorbate peroxidase and nineteen genes for superoxide dismutase were identified in lettuce. These enzymes varied from each other with regards to the number of exons and amino acids present, as well as their location within the cell. Plants exhibit various response mechanisms to combat heavy metal contamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call