Abstract

Extensive studies have shown that titanium dioxide (TiO2 ) nanomaterials (NMs) can cause toxicity in vitro and in vivo under normal conditions. However, an adverse effect induced by nano-TiO2 in many diseased conditions, typically characterized by oxidative stress (OS), remains unknown. We investigated the toxicity of nano-TiO2 in rat liver cells (BRL-3A) and Sprague-Dawley (SD) rat livers under OS conditions, which were generated using hydrogen peroxide (H2 O2 ) in vitro and alloxan in vivo, respectively. In vitro results showed that cell death ratios after nano-TiO2 exposure were significantly enhanced (up to 2.62-fold) in BRL-3A cells under OS conditions, compared with normal controls. Significant interactions between OS conditions and nano-TiO2 resulted in the rapid G0/G1 to S phase transition and G2/M arrest, which were opposite to G0/G1 phase arrest in cells after NMs exposure only. In vivo results showed that obvious pathological changes in rat livers and the increased activities of four enzymes (i.e. aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase and alkaline phosphatase) owing to liver damage after nano-TiO2 exposure under OS conditions, compared with their healthy controls. In addition, compared with increased hepatotoxicity after nano-TiO2 exposure, micro-TiO2 showed no adverse effects to cells and rat livers under OS conditions. Our results suggested that OS conditions synergistically increase nano-TiO2 induced toxicity in vitro and in vivo, indicating that the evaluation of nanotoxicity under OS conditions is essentially needed prior to various applications of NMs in foods, cosmetics and potential treatment of diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.