Abstract

In the human DNA mismatch repair (MMR) system, hMSH2 forms the hMutSalpha and hMutSbeta complexes with hMSH6 and hMSH3, respectively, whereas hMLH1 and hPMS2 form the hMutLalpha heterodimer. These complexes, together with other components in the MMR system, correct single-base mismatches and small insertion/deletion loops that occur during DNA replication. Microsatellite instability (MSI) occurs when the loops in DNA microsatellites are not corrected because of a malfunctioning MMR system. Low-frequency MSI (MSI-L) is seen in some chronically inflamed tissues in the absence of genetic inactivation of the MMR system. We hypothesize that oxidative stress associated with chronic inflammation might damage protein components of the MMR system, leading to its functional inactivation. In this study, we demonstrate that noncytotoxic levels of H2O2 inactivate both single-base mismatch and loop repair activities of the MMR system in a dose-dependent fashion. On the basis of in vitro complementation assays using recombinant MMR proteins, we show that this inactivation is most likely due to oxidative damage to hMutSalpha, hMutSbeta, and hMutLalpha protein complexes. We speculate that inactivation of the MMR function in response to oxidative stress may be responsible for the MSI-L seen in nonneoplastic and cancer tissues associated with chronic inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.