Abstract

Oxidative stress contributes substantially to urothelial carcinogenesis. Its extent can be assessed by measurements of reactive species (mainly reactive oxygen species (ROS)), oxidatively modified damage products, and levels of various antioxidants. We presented herein the methods for the measurement of protein carbonyl content and intracellular production of ROS. Protein carbonyl is the most commonly used indicator of protein oxidation because it is early formed and relatively stable under oxidative stress. Determination of protein carbonyl relies on the derivatization of carbonyl groups (aldehydes: R-CHO and ketones: R-CO-R) with 2,4-dinitrophenylhydrazine (DNPH) under strongly acidic conditions to yield stable dinitrophenyl (DNP) hydrazones. Absorbance of the DNP hydrazones at 370-375nm is proportional to the content of carbonyl groups. To report the protein carbonyl content, it is usually normalized by total proteins. Detection of intracellular ROS production is based on oxidation of 2',7'-dichlorofluorescein-diacetate (DCFH-DA) by ROS to produce the highly fluorescent 2',7'-dichlorofluorescein (DCF). Fluorescent intensity measured at 480nm excitation and 535nm emission is directly proportional to the amount of ROS generated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.